sábado, 30 de mayo de 2020

El gran experimento de física cuántica que refutó una teoría de Einstein

RedacciónBBC Mundo

Albert Einstein

Image captionEinstein no era un partidario de la física cuántica, que le generaba dudas con difícil respuesta porque afecta a partículas muy pequeñas.

Esta vez sí, Albert Einstein se equivocó.

Para poder demostrarlo sin dejar dudas se echó mano de 100.000 voluntarios que ayudaron a cerrar un debate que el físico teórico alemán mantenía con su colega danés Niels Bohr, hace 100 años.

Einstein aseguraba que si se conocen todas las variables de un sistema y sin que haya influencias externas, se puede conocer el comportamiento de cualquier partícula.

Eso, trátese de un átomo o de todo un planeta.



Einstein explicaba este comportamiento en su teoría de realismo local que implica que si algo cambia en una partícula, es porque algo en su entorno lo ha hecho.

Por ejemplo, si una mesa se mueve es porque alguien se ha acercado y la ha tocado. Es un concepto más acorde a la física clásica.

Esto, sin embargo, no ocurre cuando las partículas son muy pequeñas, según dice la física cuántica con la que Einstein no estaba muy de acuerdo.

Sí la defendía Bohr, que sostenía que las partículas son impredecibles : aún cuando se conozcan todas las variables.


Image captionLa mecánica o física cuántica es la mejor teoría que tenemos para describir el mundo a nivel de átomos y partículas subatómicas.

En el mundo cuántico, las partículas están también entrelazadas y comparten un mismo estado.

Aunque no estén en el mismo lugar, el estado en el que se encuentra una de las dos partículas afectará a la otra irremediablemente. Y esto vendría a contradecir la teoría del realismo local de Einstein en el que las partículas deben estar en el mismo entorno para mutar.
Partículas unidas

En 1964, cuando el debate entre Bohr y Einstein llevaba vivo tres décadas sin vistos a resolverse más allá del plano filosófico, el científico John Bell diseñó un algoritmo para poder demostrar la física cuántica y el fenómeno del entrelazamiento.

Sugirió separar dos partículas miles de kilómetros y comprobar que sus estados eran capaz de influirse pese a la distancia y de forma simultánea.


Image captionBell diseñó una ecuación que permitía hacer un análisis estadístico a partir de un gran número de observaciones.

Desde entonces, los científicos han usado este método para probar que Einstein se equivocaba en su teoría de realismo pero ellos mismos eran quienes hacían la selección y medición de las partículas. El resultado, por tanto, podía estar comprometido, aunque fuese remotamente.

Tenían que pensar una solución al problema que lograse refutar, ya sin dudas, esta teoría de Einstein.
El experimento

La revista Nature publica esta semana los resultados de la solución que encontró un equipo internacional de científicos para eliminar su influencia en el algoritmo ideado por Bell.

Diseñaron un videojuego en el que los participantes usaron sus celulares para participar en el llamado Gran Test de Bell . Eligiendo de forma rápida y aleatoria series de unos y ceros, generaron bits que se traducían en la forma y método en el que se medirían átomos, fotones y dispositivos superconductores en 12 laboratorios repartidos en todo el mundo.

Image captionEl videojuego se habilitó el 26 de noviembre de 2016 y participaron 100.000 personas, muchas más de las 30.000 previstas. Desde entonces los investigadores han estado estudiando los resultados.

En total participaron 100.000 personas a través de internet que no tenían ninguna relación con el experimento. De esta forma los resultados ya eran "sospechosos".

El resultado fue, una vez más, que el realismo local de Einstein no aplica con partículas pequeñas.

Éstas pueden ser modificadas aunque se encuentren separadas por el fenómeno de entrelazado de la física cuántica, sin necesidad de que haya algo en su entorno que las haga mutar.

En esto, Einstein no tenía razón.

Ahora puedes recibir notificaciones de BBC Mundo. Descarga la nueva versión de nuestra app y actívalas para no perderte nuestro mejor contenido.

¿Puede explicarse el cerebro humano usando física cuántica?

Los excéntricos hábitos de Albert Einstein y qué lecciones útiles nos enseñan

Por qué Albert Einstein tuvo que esperar a que un eclipse confirmara su teoría de la relatividad

Einstein (una vez más) tenía razón: la detección de la cuarta onda gravitacional que confirma uno de los postulados fundamentales de la Teoría de la Relatividad

RedacciónBBC Mundo


agujeros negros


Derechos de autor de la imagenNASA
Image captionLas ondas provenían de la colisión de dos agujeros negros.

Fue por mucho tiempo uno de los mayores misterios de la ciencia.
Albert Einstein estaba seguro de que existían: de hecho, las ondas gravitacionales, como las llamó, fueron una de las bases de su Teoría General de la Relatividad, uno de los postulados más innovadores y revolucionarios de la física teórica en el siglo XX.
Y este miércoles, el Observatorio Europeo de la Gravedad (EGO) en Cascina, Italia, anunció la detección, por cuarta vez, de estas ondas, generadas por la fusión de dos agujeros negros gigantes que tenían una masa alrededor de 53 veces la del Sol.



Escucha el sonido dejado por la fusión de los agujeros negros

Las ondas llegaron a la Tierra en agosto pasado y se generaron a unos 1.800 millones de años luz de distancia.
La onda fue registrada casi al mismo tiempo por tres instrumentos denominados interferómetros, en el detector Virgo, un equipo subterráneo en forma de L que fue reparado recientemente.
Es la primera onda que se detecta fuera de territorio de Estados Unidos y por tres instrumentos casi al mismo tiempo.
"Si bien este nuevo evento es de relevancia astrofísica, su detección viene con un activo adicional: esta es la primera onda gravitacional significativa registrada por el detector Virgo", asegura un comunicado de los científicos de dicho laboratorio.

Otras ondas

No es la primera vez que "el sonido del universo" llega hasta la Tierra.
En 2015, casi un siglo después de las predicciones de Einstein, los científicos las detectaron por primera vez: un raro "sonido" proveniente del espacio era el resultado de la colisión de dos inmensos agujeros negros a unos 3.000 millones de años luz de la Tierra.
Luego, en 2016, el Observatorio Gravitacional de Interferometría Láser LIGO, en Hanford, Estados Unidos, lo detectó nuevamente, por tercera vez.
Sheila Rowan de la Universidad de Glasgow, Reino Unido, aseguró a la BBC que, tras este hallazgo, los científicos están en el umbral de una nueva comprensión de los agujeros negros.
"Es tentador ver esta nueva historia de cómo los agujeros negros se formaron y evolucionaron a través de la historia del cosmos. Esta información está casi a nuestro alcance, pero todavía no hemos llegado a ella", aseguró.
Los agujeros negros se forman al final de la vida de las supernovas, una estrellas de gran masa que implosionan, es decir, estallan hacia adentro y generan un campo magnético tan fuerte que puede incluso absorber la luz.

Qué son las ondas gravitacionales

Según Einstein, todos los cuerpos en movimiento en el espacio se "hunden" por su peso en la malla del espacio-tiempo y generan ondas, como cuando una piedra cae en un río.

Albert EinsteinDerechos de autor de la imagenAFP
Image captionLa astronomía de las ondas gravitacionales permite poner a prueba la Teoría General de la Relatividad de Einstein.

Su detección se considera uno de los avances en física más importantes de las últimas décadas.
Percibir las distorsiones en el espacio-tiempo representa un cambio fundamental en el estudio del Universo, ya que permite observar antiguos eventos invisibles a los radiotelescopios o a los telescopios ópticos.
Mientras que la luz se dispersa al atravesar distintos medios -como por ejemplo, cuando llueve y se forma el arcoíris-, esto no ocurre con las ondas gravitacionales cuando se desplazan por el espacio desde su lugar de origen hacia la Tierra.
Esto permite a los científicos tener una certeza más profunda sobre lo que ocurrió en estrellas ubicadas a millones de años luz de nuestro planeta.

No hay comentarios:

Publicar un comentario

"Cómo funciona el capitalismo"

"Cómo funciona el capitalismo"

(Documental que revela sus leyes interna...